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ABSTRACT: Reduced fitness of immigrants from alternative environ-
ments is thought to be an important reproductive isolating barrier.
Most studies evaluating the importance of the relative fitness of immi-
grants to speciation have focused on reduced survival of immigrants
(i.e., immigrant inviability). However, variation in fecundity appears
to have a greater impact on variation in fitness than does variation
in viability, suggesting that reduced fecundity of immigrants could act
as an important yet largely overlooked reproductive isolating barrier.
Using a model and a survey of studies of local adaptation, we evaluate
the relative strength of reduced immigrant viability and fecundity as
potential causes of reproductive isolation. We found that reduced fe-
cundity as compared to reduced viability as a reproductive isolating
barrier should increase in importance as the relative costs of reproduc-
tion increase. Consistent with the elevated demands of reproduction re-
ported in the literature, we found that reproductive isolation from re-
duced immigrant fecundity was of similar magnitude or greater than
that from reduced immigrant viability, particularly in the early stages
of speciation. These results suggest that the important role of differen-
tial fecundity in local adaptation extends to speciation.

Introduction

Despite substantial interest in speciation, surprisingly little
is known about the relative contributions of different repro-
ductive isolating barriers to speciation (Coyne and Orr 2004;
Sobel et al. 2010). Many more studies of speciation use ge-
nomic approaches to identify genomic regions and ecologi-
cal correlates to lineage divergence. While genomic analyses
provide increasingly powerful tools for investigating patterns
of divergence (e.g., Wagner et al. 2013), they alone usually
provide only indirect information on the isolating barriers
and ecological processes causing speciation (Coyne and Orr
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2004). Consequently, the direct study of isolating barriers is
essential for furthering our understanding of the ecological
and behavioral mechanisms underlying species formation.
Furthermore, evaluating the contribution of multiple iso-
lating barriers to reducing gene flow between lineages is cru-
cial for elucidating the connections between the fundamen-
tal processes of adaptation and speciation (Schemske 2010;
Sobel et al. 2010; Nosil 2012).

Justifiably, emphasis has been placed on the importance
of identifying the isolating barriers that restrict gene flow
between young lineages (Coyne and Orr 2004; Sobel et al.
2010; Nosil 2012; Sobel and Streisfeld 2015). The focus
has been on young lineages because isolating barriers evolve
during and after speciation, and therefore the isolating
barriers that prevent gene flow between established species
may be unrelated to the processes that initiate and drive spe-
ciation (Coyne and Orr 2004; Sobel and Streisfeld 2015).
Although only a handful of relevant studies exist, two pat-
terns are of note. One, prezygotic isolating barriers appear
much stronger than postzygotic isolating barriers early in
speciation (Coyne and Orr 1989; Jiggins et al. 2001; Ramsey
et al. 2003; Nosil et al. 2005; Lowry et al. 2008; Sobel and
Streisfeld 2015). Two, isolating barriers closely tied to di-
vergent natural selection (e.g., habitat isolation and immi-
grant inviability) are often particularly strong early in spe-
ciation (Ramsey et al. 2003; Smith and Benkman 2007; Sobel
2014; Sobel and Streisfeld 2015; Ingley and Johnson 2016),
supporting the hypothesis that adaptive divergence and spe-
ciation are fundamentally linked (Schluter 2000, 2001, 2009;
Schemske 2010; Sobel et al. 2010; Nosil 2012).

One form of reproductive isolation receiving increased
attention is the reduced viability of maladapted immigrant
or nonnative genotypes compared to locally adapted or na-
tive genotypes (immigrant inviability; Hendry 2004; Nosil
et al. 2005; Giraud 2006; Lowry et al. 2008; Tobler 2009;
Ingley and Johnson 2016). This barrier arises when popula-
tions experience divergent selection and undergo local ad-
aptation to contrasting environments. Because individuals
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that disperse between such populations are likely to suffer
higher mortality, gene flow between populations is reduced
(Hendry 2004; Nosil et al. 2005). Theoretical and empirical
evidence indicate that selection against immigrants is likely
to be a strong driver of speciation (Hendry 2004; Nosil et al.
2005; Giraud 2006; Lowry et al. 2008; Tobler 2009; Ingley
and Johnson 2016). Indeed, immigrant inviability was among
the strongest barriers to gene flow in a survey of reproduc-
tive isolating barriers across a wide range of taxa (Nosil et al.
2005). A more recent survey, focused on plants, also found
that immigrant inviability was as strong as some more com-
monly studied forms of reproductive isolation (e.g., pollina-
tor isolation; Lowry et al. 2008).

While immigrant inviability has been estimated in multi-
ple systems, the reduced ability or propensity of immigrants
to reproduce has been identified as a form of reproductive
isolation in only a single system (immigrant infecundity,
per Smith and Benkman 2007), although the importance of
reduced fecundity to reproductive isolation has long been
appreciated (Coyne and Orr 2004; Harrison 2012). Because
of the additional demands of reproduction beyond that re-
quired for maintenance, initial divergence might cause a greater
depression in reproduction than in viability (Smith and Benk-
man 2007). Consistent with a greater sensitivity of reproduc-
tion than survival to variation in phenotype, fecundity se-
lection is often stronger than viability selection (Kingsolver
et al. 2001; Hereford et al. 2004) and is a stronger driver of
local adaptation (Hereford 2009).

Here, we develop a model to illustrate the relative impor-
tance of reduced immigrant viability and fecundity during
divergence along a performance axis (e.g., foraging efficiency).
Measures of viability are based on the proportion of individ-
uals that survive, whereas measures of fecundity are based
on the fecundity of the surviving individuals. Thus, our mea-
sures of fecundity are not confounded by variation in via-
bility (Ramsey et al. 2003; Coyne and Orr 2004). We then
present a survey of published studies of local adaptation to
investigate the relative strength of reduced immigrant viabil-
ity and fecundity across taxa, including in the early stages of
speciation. Most studies in our survey are reciprocal trans-
plant experiments, which provide a direct test of the fitness
consequences of immigration to nonnative versus native en-
vironments and are well suited for estimating the potential
strength of reproductive isolation arising from the reduced
fitness of immigrants (Nosil et al. 2005). We address whether
reduced immigrant fecundity potentially acts as a compara-
ble or even stronger barrier to gene flow than that arising
from reduced immigrant viability, including during the crit-
ical early stages of speciation (Coyne and Orr 2004; Nosil
2012; Sobel and Streisfeld 2015).

We recognize that reciprocal transplant experiments are
only a measure of a component of reproductive isolation
and that a direct effect of reduced immigrant viability and
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fecundity on reproductive isolation will be evident only if
there is dispersal between habitats (i.e., habitat isolation is
not complete; Nosil et al. 2005). Indeed, if immigrants have
low fitness in alternative habitats, then there should be strong
selection for adaptive habitat choice (e.g., matching habitat
choice; Edelaar et al. 2008) reducing the direct net effect of
reduced immigrant fitness on reproductive isolation. Thus,
one needs to measure immigration rates in addition to im-
migrant fitness to measure the net effect of each component
on reproductive isolation (Sobel et al. 2010). In the absence
of data on immigration rates, our goal is to evaluate the rel-
ative potential importance of reduced immigrant viability
and fecundity to reproductive isolation, whether directly
by reducing immigrant fitness or by favoring the evolution
of habitat preferences.

Methods
A Model

We developed a model to illustrate how the strength of re-
duced immigrant viability and fecundity as potential bar-
riers to gene flow varies as a population diverges from an
ancestral population along a performance axis. We focus on
the effect of the well-documented elevated demands of re-
production relative to those for maintenance alone (see be-
low). We assumed a standard normal distribution of pheno-
types for both the ancestral and derived populations (fig. 1A,
1B). We characterized variation in performance (e.g., feed-
ing performance) in relation to phenotype using a quadratic
equation, which we base on one of the few fitness surfaces
having multiple adaptive peaks, and using measures of per-
formance across a range of phenotypes (Benkman 1993,
2003). We set the mean for the ancestral population at the
maximum for the performance curve (i.e., we assumed local
adaptation; fig. 1A) and assumed that the performance curve
peaked at a performance value of 0.4, that it had positive
values spanning an interval of 5 units of phenotypic stan-
dard deviation, and that performance values equaling or ex-
ceeding 0.1 and 0.2 were required for survival and breeding,
respectively (fig. 1A). We assumed that the performance curve
remained constant in the ancestral environment and was
identical for both survival and reproduction. The form of
the performance curve in the derived habitat was not con-
sidered, because we used survival and reproduction in the
ancestral habitat only to estimate the strength of the repro-
ductive isolating barriers.

The absolute value for survival was arbitrary, but a two-
fold higher value for breeding (which includes survival)
than survival alone approximates the relative energy de-
mands of breeding for a salamander (Fitzpatrick 1973), is
at the low end for altricial birds (estimated as 2-5 times
maintenance costs; Walsberg 1983), and is less than relative
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Figure 1: Model used to estimate reproductive isolation from reduced immigrant viability and fecundity as a population diverges from its
ancestral population. A, The phenotypic distribution of the ancestral population is a standard normal centered under a quadratic perfor-
mance curve with the performance thresholds for survival and breeding shown (dark gray represents individuals able to both survive and
breed, and light gray represents individuals able to survive but not breed; see text). As the derived population diverges from the ancestral
population (B), fewer individuals in the derived population can survive (solid curve) and reproduce (dashed curves) using the ancestral
resources (C); the three dashed curves in C represent, from left to right, breeding thresholds of 0.3, 0.25, and 0.2, respectively. The individual
level of reproductive isolation from reduced immigrant fecundity (D) increases as the breeding threshold increases. When the breeding
threshold is ~2.5 times that required to survive, then reproductive isolation from reduced immigrant fecundity is consistently stronger than
that from reduced immigrant survival. Because the proportion of individuals that can breed declines more rapidly than the proportion that
can survive, reproductive isolation increases initially more rapidly as a result of reduced immigrant fecundity than as a result of reduced
immigrant viability (D). Reproductive isolation from reduced immigrant fecundity increases more rapidly with divergence when the relative
demands of breeding increase, as illustrated by the three dashed curves in D where, from left to right, the breeding thresholds decrease as

above.

energy demands for two species of mammals (estimated as
~3 times maintenance costs; Perez and Mooney 1986; Korine
et al. 2004). See Begon et al. (2006, p. 30) for a similarly gen-
eral example analogous to our figure 1A. Based on our as-
sumptions, individuals within 2.165 and 1.768 units of stan-
dard deviation of the phenotypic mean of the ancestral
population (0.970 and 0.923 of the ancestral population)
were able to survive and breed, respectively (fig. 14). We
then determined the proportion of the derived population
that could survive or breed relative to the number that sur-
vived on the ancestral resource as it diverged from the an-
cestral distribution (fig. 1B, 1C). We also provide estimates
for when the energy or resource costs of reproduction are
2.5 times and 3.0 times that for maintenance (breeding thresh-

olds of 0.25 and 0.3; see fig. 1A) to illustrate how variation in
breeding demands could affect the relative importance of re-
duced immigrant fecundity.

Our model assumed that the performance curves for both
survival and reproduction were identical in the ancestral en-
vironment. If there were differences between the optima of
these curves, then this could alter the model’s predictions
depending on the direction of the difference between the
two optima relative to the direction of divergence from the
ancestral environment. However, unless there is a bias in
the direction of the differences between the optima relative
to the direction of divergence from the ancestral environ-
ment, which we have no reason to expect, our model results
should reflect an average expectation. The shape of the per-
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formance curves for survival and reproduction could also
differ. However, we are unable to envision a general mech-
anism that would cause such variation to consistently and
differentially impact immigrant viability and fecundity. Con-
sequently, we have chosen to ignore such variation in our
model.

We used the following general equation to estimate the
strength of the reproductive isolating barrier (RI; Sobel and
Chen 2014)

(1)

NNat
RI=1—2[ },

NNat + Nat

where NNat denotes the mean fitness of nonnative individ-
uals (those from the derived population) and Nat denotes
the mean fitness of native individuals (those from the an-
cestral population), both while utilizing the resource of the
ancestral population. As the mean fitness of nonnative indi-
viduals (NNat) decreases toward 0, NNat/(NNat + Nat) de-
creases and RI approaches 1 (see fig. 1C, 1D). When the fit-
ness of nonnative individuals is relatively high (NNat ~ Nat),
then RI approaches 0 (i.e., 1 — 2[1/2]). This equation pro-
duces symmetrical values such that positive and negative num-
bers are directly comparable. A slope of 2 ensures that values
of RI range from —1 to 1, representing the proportional re-
duction in gene flow relative to expectations under random
mating (Sobel and Chen 2014). We used equation (1) to
estimate RI arising from reduced immigrant viability and
fecundity, where the components of fitness were the propor-
tion of individuals surviving and the proportion of individ-
uals breeding relative to those surviving, respectively.

Tests of the Model

We used data from a literature search to test whether the
strength of RI from reduced immigrant fecundity is greater
than that from reduced immigrant viability overall and
during the early stages of speciation. We searched for data
that would allow comparison of the fitness of immigrants
to residents by surveying the literature on reciprocal trans-
plant experiments and studies of local adaptation using the
Web of Science (Thomson ISI). We first conducted two sep-
arate searches on “reciprocal transplant” and “local adapt”,”
restricting the journals searched to The American Naturalist,
Biological Journal of the Linnean Society, BMC Evolutionary
Biology, Ecology, Ecology Letters, Evolution, Evolutionary
Ecology, Evolutionary Ecology Research, Journal of Ecology,
Journal of Evolutionary Biology, Oecologia, Oikos, and Proceed-
ings of the Royal Society of London Series B. This restriction
was necessary as the searches yielded more than 5,000 and
172,000 articles, respectively, largely from irrelevant sources.
We conducted a second search on the topics of immigrant
inviability and immigrant infecundity without restricting the
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journals searched. We used the abstracts of articles to iden-
tify studies with relevant data and to exclude others. We also
searched for relevant citations within each article to either
collect additional data on the focal lineage or on other line-
ages. All searches were conducted on literature published be-
fore September 2015.

Within each article, we searched for measures that cap-
tured viability or fecundity components of fitness. We used
WebPlotDigitizer (Rohatgi 2015) to scan and extract data
from figures when necessary. Viability was always measured
as some type of survival estimate, whereas fecundity was mea-
sured using a variety of metrics of reproductive success (e.g.,
number of eggs laid, number of flowers). We were careful
to ensure that fitness measures did not confound viability
and fecundity. Avoiding confounded fitness measures was
relatively easy for viability components of fitness, which are
measured in ways that are not influenced by variation in
fecundity (e.g., number of days survived, percent survival).
Estimates of fecundity (e.g., lifetime number of offspring
produced) usually confounded viability and fecundity com-
ponents of fitness, and these studies were excluded from our
analyses. However, some studies restricted fecundity analy-
ses to survivors or measured fecundity as mean reproductive
output per unit time across the life span of an individual
(e.g., mean number of eggs laid per surviving day), so that
variation in survival did not directly influence variation in
fecundity. When fitness was measured over multiple years,
we pooled data across years to obtain a single mean estimate.
The majority of studies did not report variances associ-
ated with fitness estimates, preventing us from using meta-
analytic approaches that weight estimates of the mean by
their variance (Gurevitch and Hedges 2001). We estimated
the strength of the RI using equation 1. Additional details
on estimating the strength of RI from each study are avail-
able in appendix A (apps. A, B are available online). All data
are deposited in the Dryad Digital Repository: http://dx
.doi.org/10.5061/dryad.0nm3k (Porter and Benkman 2017).

To test whether the strength of RI from reduced immi-
grant fecundity was greater than that from reduced immi-
grant viability overall, we included all estimates of both iso-
lating barriers in one comparison. The distributions of RI
values were highly nonnormal, precluding the use of para-
metric statistics for the overall comparison. Variances also
differed between the two groups, which can obscure inter-
pretations about differences in means when certain non-
parametric tests (e.g., Mann-Whitney U-tests) are used. There-
fore, we used a randomization test based on 5,000 iterations
to compare the mean strength of RI. In remaining compar-
isons, we restricted analyses to cases where both isolating
barriers could be estimated from the same experiments.
We used paired t-tests to test for differences between these
paired estimates of RI from the same experiments; the paired
data met the assumptions required for a paired t-test. We
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tested for a difference in the early stages of speciation by
restricting the paired t-test to lineages recognized at or be-
low the subspecies rank (e.g., ecotypes, varieties, popula-
tions). We chose this approach because we were not able
to obtain age estimates for the majority of the youngest
lineages in our sample; thus, restricting analyses to subspe-
cies and lower taxonomic ranks allowed us to focus on the
early stages of divergence. All analyses were done in R
(ver. 3.02; R Core Team 2013).

We searched the literature for published estimates of
lineage ages. In 34 of 49 cases, we found published age es-
timates based on sequence divergence. In nine cases, age
estimates were based on other published data, such as intro-
duction date when nonnative species diversified upon col-
onization of a new geographic region. In the remaining
six cases, we used sequence data from GenBank, where pair-
wise genetic distances were estimated using MEGAG6 (Tamura
et al. 2013) after alignment with ClustalW (Chenna et al.
2003), with lineage age estimated using published molecular
clocks (Brower 1994; Gaunt and Miles 2002; Kay et al. 2006;
Weir and Schluter 2008; Papadopoulou et al. 2010). Details
on estimating lineage age are available in appendix B. We
converted lineage age into the number of generations since
divergence by using data on the number of generations per
year for each taxon from the literature.

Comparison to Previous Literature Survey

In a study of local adaptation, Hereford (2009) conducted a
literature survey of reciprocal transplant experiments sim-
ilar to ours. However, our surveys differ in several ways.
First, we included 35 field experiments published after Her-
eford (2009). Second, Hereford (2009) restricted analyses
to reciprocal transplant studies in the field, whereas we in-
cluded nine laboratory studies where the agents of selection
proposed to be driving divergence were present. Nosil et al.
(2005) similarly included laboratory studies when assessing
the potential importance of reduced immigrant viability. Fi-
nally, we used 52 of the studies included by Hereford (2009),
but because of apparent or potential confounding of viability
and fecundity fitness measures, we excluded 22 (30%).

Results

As the derived population diverges from an ancestral pop-
ulation in our model (fig. 1B), the proportion of indi-
viduals from the derived population that can reproduce us-
ing the resource of the ancestral population is lower and
declines more rapidly than the proportion of individuals
that can survive (fig. 1C). These differences are especially
pronounced as the relative demands of breeding increase.
When the demands of reproduction exceed two times main-
tenance and survival costs, the individual level of RI from

reduced immigrant fecundity is greater than that arising
from reduced immigrant viability early in divergence (fig. 1D).
Even when discounting RI from reduced immigrant fe-
cundity by the earlier acting reduced immigrant survival
([1 = Rleduced immigrant survival] X Rlreduced immigrant fecundity)> the ab-
solute contribution (sensu Ramsey et al. 2003) to RI from re-
duced immigrant fecundity is higher than that arising from
reduced immigrant viability early in divergence and increas-
ingly so as the relative demands of reproduction increase
(fig. 2).

We found a total of 125 estimates of immigrant viability
and 36 estimates of immigrant fecundity from 97 studies
(supplementary material, available online; plants: 67; ar-
thropods: 40; vertebrates: 22; mollusks: 6; algae: 2; and
cnidarians: 2). Overall, the strength of RI resulting from re-
duced immigrant fecundity tended to be stronger than that
resulting from reduced immigrant viability (fig. 3A; ran-
domization test: P = .066), as predicted (fig. 1D) if the
demands of reproduction substantially exceed that for sur-
vival. However, this trend was not detected when controlling
for time since divergence (number of generations). The re-
siduals for RI from reduced immigrant fecundity from a re-

\ Fecundity
\ (38X survival)

N
1

Fecundity\ T~ - ~ o \
1 (2X survival) ~~_

Contribution to reproductive isolation
compared to reduced immigrant viability
/

0 T T T T T T T 1
0 1 2 3 4

Divergence (units of SD)

Figure 2: Absolute contribution of reproductive isolation arising
from reduced immigrant fecundity, as compared to that resulting
from reduced immigrant viability, increases with increasing de-
mands for breeding and decreases with increasing phenotypic diver-
gence. The different curves represent the absolute contributions to
reproductive isolation resulting from reduced immigrant fecundity
(Rl educed immigrant fecandity discounted by earlier acting reduced immigrant
survival: [1 — Rleuced immigrant survival] X Rlreduced immigrant fecundiey) divided by
reproductive isolation arising from reduced immigrant viability, where
the requirements for breeding are 2, 2.5, and 3 times that required for
survival, respectively (data from fig. 1D).
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Figure 3: Strength of reproductive isolation resulting from reduced
immigrant viability and fecundity across all lineages in our literature
survey (n = 125 and 36, respectively; A) and in 15 young lineages
(e.g., ecotypes, populations, varieties; B) where reduced immigrant vi-
ability and fecundity were both measured in the same experiment.
A, Black bars are the means. B, Reproductive isolation from reduced im-
migrant fecundity was greater than or equal to that from reduced im-
migrant viability in 15 paired comparisons (solid lines connect esti-
mates [gray circles] from the same experiment), whereas reproductive
isolation from reduced immigrant viability was larger in two of the
comparisons (dashed lines connect estimates [open circles] from the
same experiment).

gression between RI (dependent variable) and time since di-
vergence were not greater than those for reduced immigrant
viability (randomization test: P = .991). A more powerful
test of the relative strength of RI comes from the 18 studies
where both forms of isolation could be estimated from the
same experiment, and therefore lineage divergence is con-
trolled. In this subset of data, the individual level of RI re-
sulting from reduced immigrant fecundity was greater than
that from reduced immigrant viability (paired t-test: t =
—2.68, df = 17, P = .016). Even after discounting RI by
the earlier acting barrier (reduced immigrant viability), the
absolute level of RI resulting from reduced immigrant fe-
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cundity tended to be greater than that from reduced immi-
grant viability (paired t-test: t = —2.06,df = 17, P = .055).

Reproductive isolation resulting from reduced immi-
grant fecundity is expected to be stronger than that result-
ing from reduced immigrant viability, especially early in di-
vergence (figs. 1D, 2). Fifteen of the above 18 lineages are at
and below the subspecies rank (e.g., populations, varieties,
ecotypes). Comparisons of these 15 lineages show that RI
from reduced immigrant fecundity was consistently greater
than that from reduced immigrant viability early in diver-
gence (fig. 3B; paired t-test: t = —3.47,df = 14, P = .004).

Discussion

Our literature survey showed that reduced immigrant fe-
cundity is a stronger reproductive isolating barrier than re-
duced immigrant viability early in divergence (fig. 3B), con-
sistent with predictions from our model (figs. 1D, 2). These
results are also consistent with previous studies that have
found that fecundity selection is generally stronger than
viability selection (Kingsolver et al. 2001; Hereford et al.
2004) and that fecundity selection is a stronger driver of lo-
cal adaptation (Hereford 2009). The emerging pattern of
variation in fecundity having a stronger impact than var-
iation in viability on various evolutionary processes (e.g.,
phenotypic evolution, local adaptation, and potentially spe-
ciation) is presumably due to the greater sensitivity of re-
production than survival to variation in phenotype. Indeed,
as populations diverge in traits linked to performance (e.g.,
resource utilization traits), the ability of the derived popu-
lation to breed in the ancestral environment will be more
strongly compromised than the ability to survive because
more resources are needed to both survive and breed than
to survive alone (e.g., Walsberg 1983). We note, however,
that reproductive isolation resulting from reduced immi-
grant viability will act to reduce gene flow earlier in the life
cycle of organisms than that arising from reduced immi-
grant fecundity, given that a period of survival necessarily
precedes reproduction. Although earlier acting barriers have
the potential to contribute more to reductions in gene flow
than later acting barriers (Coyne and Orr 2004; Sobel et al.
2010), our model (fig. 2) and analyses of reciprocal trans-
plant studies suggest that the higher demands of breeding
compared to survival may overcome this effect. Given that
RI arising from reduced immigrant viability has been shown
to be one of the strongest measured barriers to gene flow
(Nosil et al. 2005; Lowry et al. 2008), our work suggests that
RI resulting from reduced immigrant fecundity may be just
as important or more important for speciation, especially
early in divergence (fig. 3B) and when the demands of breed-
ing are relatively high (figs. 1D, 2).

The vast majority of our estimates of RI were obtained
from reciprocal transplant experiments, where individuals
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were assigned to alternative environments randomly with
respect to their phenotype. This may overestimate the im-
portance of reduced immigrant fecundity and viability rel-
ative to other forms of RI, because selection against immi-
grants is thought to promote the evolution of habitat isolation
that will reduce the number of immigrants (Hendry 2004;
Nosil et al. 2005), and immigrants might have phenotypes
with a higher expected performance than individuals drawn
at random from the population (i.e., matching habitat choice
sensu Edelaar et al. 2008). Conversely, as habitat choice
evolves (e.g., Bolnick et al. 2009), the importance of reduced
immigrant fecundity in initiating speciation will be obscured.
Because barriers that initiate divergence can be obscured as
other barriers evolve, characterizing the evolution of RI early
in speciation is difficult (Coyne and Orr 2004; Sobel et al.
2010). Nevertheless, the few estimates of reduced immigrant
fecundity from observational studies indicate that this bar-
rier is fairly strong in nature (e.g., Smith and Benkman 2007;
C. K. Porter, unpublished data), but more estimates from
natural systems are needed to evaluate the generality of this
pattern. Future work that directly estimates the relative
strength of RI from reduced immigrant viability and fecun-
dity (and all barriers) in young lineages and in groups at
varying points along the speciation continuum would be es-
pecially useful for further evaluating the relative importance
of different factors during speciation (Nosil 2012).
Divergence in traits other than performance might result
in different reproductive isolating barriers playing a larger
role in speciation. For example, immigrants could be more
easily detected than residents by predators (e.g., Sandoval
1994), or immigrants might lack defenses against novel pred-
ators in an alternative environment (e.g., Freeman and
Byers 2006) but might not suffer reduced reproductive suc-
cess (Nosil 2004; Sandoval and Nosil 2005). Consistent with
this alternative, we find that RI resulting from reduced im-
migrant viability tends to be greater in lineages that are di-
verging in antipredatory traits than for lineages diverging in
performance traits (randomization test: P = .076); this pat-
tern is unlikely the result of a difference in the number of
generations since divergence because lineages diverging in
antipredatory traits have not diverged over more genera-
tions (predation: 688,967 = 276,398, n = 5; other lineages:
1,471,315 = 617,891, n = 38; P = .540). Unfortunately,
we are unable to evaluate the relative roles of reduced immi-
grant viability and fecundity in lineages prominently diverg-
ing in antipredatory traits, because fecundity components
of fitness were rarely measured in these studies. However,
reduced immigrant fecundity could still play an important
role in predator-mediated divergence if, for example, prey
respond to the threat of predators by increasing vigilance
and reducing feeding behaviors, thus reducing reproductive
success (e.g., Lima and Dill 1990). More estimates of fecun-
dity are needed to evaluate the relative importance of re-

duced immigrant fecundity and viability in lineages diverg-
ing in antipredatory traits.

Our work adds to the growing body of literature on re-
productive isolating barriers by investigating the relative
roles of viability and fecundity components of fitness in
causing the low fitness of immigrants from alternative en-
vironments. In particular, our findings suggest how diver-
gence onto alternative resources and the high demands of
reproduction could reduce gene flow and act to promote
speciation. One possibility is that reduced fecundity might
contribute more to ecologically mediated reductions in hy-
brid fitness than reduced viability. Our results also suggest
that knowing both the ecological context of divergence,
which is widely acknowledged to be critical (Schluter 2000,
2001, 2009; Coyne and Orr 2004; Schemske 2010; Sobel et al.
2010; Nosil 2012), and the demands of reproduction will
provide insight into the relative importance of different
factors influencing reproductive isolation.
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“Next to the blind fish, the blind crawfish attracts the attention of visitors to the cave. This is the Cambarus pellucidus” (figured). From “The
Mammoth Cave and Its Inhabitants” by A. S. Packard Jr. (The American Naturalist, 1871, 5:739-761).
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